
 

 

 

 

 

 
  
 

SoftPro Select Plugins 
 

A Whitepaper on Authoring Extensions 
to the SoftPro Select platform 

 
 
 

 

 

 

 

 

 

 

 

 

Publication date: May 2019  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
1 

 

Abstract 
With the release of SoftPro Select version 4.6.0, the process of authoring and deploying extensions to 

the SoftPro Select application platform (client and server) has changed dramatically. We acknowledge 

there are customers who have already created packages for versions of SoftPro Select prior to version 

4.6.0, or those who may want to write new custom integrations/extensions to SoftPro Select.  

In this whitepaper, we provide a treatise on the concept of a Plugin as applicable to SoftPro Select, and 

guidance for using the SoftPro Select SDK to create new plugins, upgrade existing custom client-side 

and server-side integrations (a.k.a. “Custom Packages”) from versions prior to 4.6.0 and packaging 

them into plugins for deployment in the SoftPro Select ecosystem of version 4.6.0 and beyond. 

Prerequisites 

 SoftPro Select client and server installation 

 A basic understanding of Microsoft™ Visual C# 

 Access to the Visual Studio 2015 Integrated Development Environment 

 Access to nuget.org as a configured package source via NuGet Package Manager 

Metaphor 
  

CLIENT  See SHELL  
CLIENT-SIDE  Of or relating to the part of the SoftPro Select 

application which contains the user interface.  
MID-TIER  See SERVER  
MMC  Microsoft™ Management Console.  
PACKAGE  An extension to either the client-side shell 

application or the server-side application that 
provides additional functionality, services, jobs, 
etc. Client-side packages may or may not include 
user interface elements.  

PLUGIN  A bundle that can contain packages, either 
client, server or both.  

SERVER  The extensible part of the application which 
contains the Windows™ service.  

SERVER-SIDE  Of or relating to the part of the SoftPro Select 
application which contains the Windows™ 
Service for SoftPro Select. This part of the 
application does not contain any user interface 
elements.  

SHELL  The extensible part of the application which 
contains the user interface.  

VS Visual Studio IDE. 

 

  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
2 

 

Background 
Prior to version 4.6.0 of SoftPro Select, development of extensions to the Shell and/or Server required 

developers to acquire the SoftPro Select SDK through a MSI installer. Development of the extension 

would result in a package that was bound to the version of the SDK installed. Once the development-

test cycle was complete, the package, if it was a server-side package, would be delivered to a system 

administrator to install on the server via the SoftPro Select configuration MMC snap-in. If the package 

was a client-side package, it would be delivered to a system administrator to install on the individual 

user workstations.  

This model had several pain-points: 

 Changes in major/minor versions of Select required recompilation of the package. 

 Recompilation of the package(s) happened after-the-fact. The system had to be upgraded first, 

then the packages recompiled. This could create a potential outage until the rebuild (and any 

subsequent errors) were completed. 

 Restart of the server (for server-side packages) required a separate application. 

 Deploying a client-side package required deployment to individual machines either manually or 

through system management software. 

 Different versions of the SDK could not readily coexist, preventing/hindering development in a 

heterogeneous environment. 

Plugin 
The architecture of SoftPro Select version 4.6.0 supports the concept of a Plugin. In essence, a plugin is 

deployable artifact that may contain custom packages, either client-side, server-side or both. This 

allows the complete functionality of a feature to be installed as one body of work in the system.  

Deployment of individual Shell or Server packages is not supported by SoftPro Select 4.6.0 and beyond.  

The features to install, uninstall and upgrade plugins are incorporated into the administrative module 

(SPAdmin) of SoftPro Select. A full discussion of the underlying architectural changes is outside the 

scope of this document.  

NuGet Integration 
The SDK is now distributed as NuGet packages on nuget.org. The following packages are paramount 

for development of custom packages and plugins: 

1. SoftPro.Select.Shell.Sdk 

This includes necessary assemblies and tools to develop, build and debug a SoftPro Select Shell 

package. The package has dependencies on these satellite NuGet packages: 

a. SoftPro.Select.Core 

b. SoftPro.Shell.Core 

c. SoftPro.Select.Controls 

2. SoftPro.Select.Server.Sdk 

This includes necessary assemblies and tools to develop, build and debug a SoftPro Select 

Server package.  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
3 

 

The package has dependencies on these satellite NuGet packages: 

a. SoftPro.Select.Core 

b. SoftPro.Server.Core 

 

3. SoftPro.Select.Plugin.Sdk 

This includes necessary tools to define the metadata of a plugin and bundle Shell and/or Server 

packages into a SoftPro Select plugin. 

Distribution of the SDK as NuGet packages offers several advantages: 

 Immediate access to prior, current and preview builds of the SDK. 

 Administrator privileges are not required to install the SDK. 

 Multiple versions can be on the same machine at any one time since they are local to the 

project. 

SoftPro Select SDK Visual Studio Extension 
In SoftPro Select 4.6.0 and beyond, developers do not need to run a MSI to install the SoftPro Select 

SDK. The development toolkit is bundled into a VS extension that is, at the time of publication of this 

whitepaper, compatible with VS 2015 only. The extension can be installed from the Visual Studio 

Extensions Gallery.  

 

The following development tools and artifacts are packaged into this extension: 

1. SoftPro Select SDK NuGet packages listed in the aforementioned section. 

2. VS project templates that may be used to create, build and debug Shell, Server and Plugin 

package projects. 

3. The SoftPro WCF Proxy Generator, a custom code generator required to auto-generate a WCF 

service endpoint’s client proxy code. This may be required by Shell package code that wants to 

communicate to a custom WCF endpoint registered by a Server package. 

 
While a developer may be able to create custom package projects without this extension by means 
of installing relevant SDK NuGet packages into projects, we strongly recommend that you install 
the VS extension for a productive and enhanced development experience.  
 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
4 

 

Authoring New Plugins 
Prerequisites: 

1. Install SoftPro Select client and server on the developer’s workstation. 

2. Install the SoftPro Select SDK extension through the extensions manager in VS 2015. 

a. Open Visual Studio and select Tools, Extensions and Updates… 

b. Search for SoftPro Select SDK in the Online gallery 

c. Click the Download button and install the extension. 

d. Restart Visual Studio 

SoftPro Select Project Templates 
After the SDK extension is installed in Visual Studio, open VS and choose File->New Project. You will 

see project templates under Visual C#->SoftPro->Select that you need for development. 

 

SoftPro Select Shell Package 
1. Create a new Shell Package project in Visual Studio by selecting the SoftPro Select Shell 

Package project template. 

 

2. Customize the package name and other parameters in the Shell Package Settings dialog as 

required. 

 

3. Build the project and click F5 to debug the package. 

 

4. SoftPro Select client will launch and the sample New Ribbon Tab that is included in the project 

template, will appear in the application. 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
5 

 

 

5. Open the Select Options dialog. The Shell package that is being debugged will appear as a 

side-loaded plugin in Select. A side-loaded plugin persists for the lifetime of the debugging 

session only. 

 

 

  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
6 

 

SoftPro Select Server Package 
1. Create a new Server Package project in Visual Studio by selecting the SoftPro Select Server 

Package project template. 

 

2. Customize the package name and other parameters in the Server Package Settings dialog as 

required. 

 

3. Stop the running instance of SoftPro Select Server via the SoftPro Select Services MMC snap-

in. 

 

4. Build the project and click F5 to debug the package. 

 

 

 You will need to run Visual Studio as an Administrator to debug Server package projects. 
 

 It is highly recommended to build strongly-signed Shell and Server package assemblies 
before they are packaged into a plugin. 

 

 

SoftPro Select Plugin 
1. Choose the option to Add->New Project to the solution that contains the Shell/Server package 

and select the SoftPro Select Plug-in Package project template. 

 

2. Open SelectPlugin.manifest and modify the plugin’s metadata as required. The name of the 

plugin that contains the Shell/Server packages must be unique and follow naming conventions 

of NuGet packages. 

 

3. If the plugin requires a license, set the “requiresLicense” flag to true. See Addendum for details 

on plugin settings. 

 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
7 

 

4. You may also assign configuration settings to the plugin. See Addendum for a thorough 

discourse on specifying a plugin’s settings. 

 

5. If you want this plugin to encapsulate the Shell package project that’s in the solution, add a 

project reference to the Shell package project.  

 

Note: You may add one or more Shell and/or Server package project references to a plugin project                   

depending on how you want to bundle packages into the resulting plugin. 

6. Save your work and do Rebuild All of the plugin project. 

 

7. Assuming all metadata specified in the manifest is valid, the project will build a 

<plugin_name>.nupkg file in the output path, where plugin_name is the name specified in the 

plugin’s manifest file. 

 

8. The Shell and/or Server packages are bundled into the plugin file as one deployable unit. This 

plugin can now be installed via SPAdmin Plug-ins Manager in the SoftPro Select Client 

application. Please refer to SoftPro Select Release Notes for information on the installation 

process. 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
8 

 

Upgrading Existing Packages 
Prerequisites: 

1. Install SoftPro Select client and server on the developer’s workstation. 

2. Install the SoftPro Select SDK extension through the extensions manager in VS 2015. 

a. Open Visual Studio and select Tools, Extensions and Updates… 

b. Search for SoftPro Select SDK in the Online gallery. 

c. Click the Download button and install the extension. 

d. Restart Visual Studio. 

Select Shell Package 
1. Create a new Shell Package project in Visual Studio by selecting the SoftPro Select Shell 

Package project template. 

 

2. In the Shell Package Settings dialog, specify the same package name and other parameters 

as those defined in the existing package code. 

 

3. Open the project’s Properties tab and update the Assembly name and Default namespace 

such that they match the corresponding metadata of the existing package. 

 

4. Copy and paste contents of the <package_name>.cs file (the package class) from the existing 

package to the new project’s <package_name>.cs file. 

 

5. Annotate the package class with the [SoftPro.ClientModel.EntryPoint] attribute. 

6. Copy and paste contents of the <package_name>.ctd file based on this screenshot. 

 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
9 

 

7. Copy over all other files and folders from the legacy package project into the new project. 

 

8. Install other dependencies like NuGet packages, reference common libraries that were 

referenced by the existing package project, etc. 

 

9. Remove Manifest.xml and/or .lic files from the project, if applicable. They are not relevant to 

the plugin development model anymore. 

 

10. Build the project and click F5 to debug the package. 

 

SoftPro Select Server Package 
1. Create a new Server Package project in Visual Studio by selecting the SoftPro Select Server 

Package project template. 

 

2. In the Server Package Settings dialog, specify the same package name and other parameters 

as those defined in the existing package code. 

 

3. Open the project’s Properties tab and update the Assembly name and Default namespace 

such that they match the corresponding metadata of the existing package. 

 

4. Copy and paste contents of the <package_name>.cs file (the package class) from the existing 

package to the new project’s <package_name>.cs file. 

 

5. Annotate the package class with the [SoftPro.ClientModel.EntryPoint] attribute. 

 

6. Copy over all other files and folders from the legacy package project into the new project. 

 

7. Install other dependencies like NuGet packages, reference common libraries that were 

referenced by the existing package project, etc. 

 

8. Remove Manifest.xml and/or .lic files from the project, if applicable. They are not relevant to 

the plugin development model anymore. 

 

9. Stop the running instance of SoftPro Select Server via the SoftPro Select Services MMC snap-

in. 

 

10. Build the project and click F5 to debug the package. 

 

 

 

 

 

 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
10 

 

 

 You will need to run Visual Studio as an Administrator to debug Server package projects. 
 

 It is highly recommended to build strongly-signed Shell and Server package assemblies 
before they are packaged into a plugin. 

 

 

SoftPro Select Plugin 
Finally, you will need to bundle the upgraded Shell and/or Server packages into one or more plugins 

depending on how you want to control the packaging and deployment of features encapsulated in the 

custom packages. Follow the same steps for creating and building a plugin file as listed in the “SoftPro 

Select Plugin” section above. 

 

Managing SDK Upgrades 
 

In versions prior to 4.6.0, if there was a change to the major or minor version of SoftPro Select, 

developers would need to rebuild their custom packages against the upgraded version of the SDK and 

re-deploy the updated packages on the client and/or server. 

The plugin infrastructure of SoftPro Select is engineered such that a Shell/Server package written 

against version 4.6.0 of the SDK will continue working seamlessly with future versions, regardless of 

major or minor version changes, of SoftPro Select without requiring developers to rebuild against the 

latest version of the SDK. Plugin authors will not be required to create and deploy upgrades to their 

plugin unless of course, there are feature-updates to the plugin itself. 

Caveat 
We typically manage incremental evolution of the Select platform in a way that there are no breaking 

changes to the SDK and if there are outliers, their footprint is kept as small as possible. In the event we 

communicate the need for developers to rebuild their packages against a particular version of the SDK, 

you will need to install that version of the SoftPro.Select.Shell.Sdk NuGet package in Shell package 

projects, SoftPro.Select.Server.Sdk in Server package projects and SoftPro.Select.Plugin.Sdk in Plugin 

package projects. 

  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
11 

 

Common Libraries 
 

As developers, we may want to abstract reusable code and components into class libraries that can be 

referenced by Shell/Server packages. 

Depending on the scope of the SoftPro Select API that you may want to consume in such a library, you 

can install relevant NuGet package(s) from nuget.org 

 SoftPro.Select.Core 

This package contains assemblies that are consumed by Shell and Server packages. 

 

 SoftPro.Accounting.Client.dll 

 SoftPro.ClientModel.dll 

 SoftPro.Documents.Client.dll 

 SoftPro.EntityModel.dll 

 SoftPro.Imaging.Client.dll 

 SoftPro.OrderTracking.Client.dll 

 SoftPro.ProceedsTracking.Client.dll 

 SoftPro.Register.Client.dll 

 SoftPro.Reporting.Client.dll 

 SoftPro.Select.Client.dll 

 

 SoftPro.Shell.Core 

This package contains SoftPro.Select.Shell.dll which is the core assembly that encapsulates 

features of the SoftPro Select Shell framework. 

 

 SoftPro.Server.Core 

This package contains assemblies that may be consumed by server-side code.  

 

SoftPro.PersistenceModel.dll 

SoftPro.Select.Service.dll 

SoftPro.ServerModel.dll 

 

 SoftPro.Select.Controls 

This package contains assemblies required for consuming SoftPro Select controls and 

snapsections, writing extensions to them, etc. 

 

SoftPro.Accounting.Controls.dll 

SoftPro.OrderTracking.Controls.dll 

SoftPro.OrderTracking.SnapSections.dll 

SoftPro.Select.Controls.dll 

SoftPro.Select.OrderTracking.Shared.dll  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
12 

 

Conclusion 
 

The SoftPro Select Plugin development model offers a sophisticated framework for writing, packaging 

and deploying extensions to the SoftPro Select platform. A plugin represents a “Unit of Work” that may 

host Shell and/or Server packages. It can be considered as a standalone, independent component that 

encapsulates a set of related features and helps streamline the deployment of those features in the 

SoftPro Select ecosystem. 

This whitepaper guides 3rd party developers with a roadmap to create new Shell or Server packages, 

plugins and migrate existing Shell and/or Server packages to work with the new plugin model of 

SoftPro Select. 

  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
13 

 

Addendum 
 

Plugin Settings 
Developers often find the need to integrate configurable settings that are used by custom Shell or 

Server packages. Typically, such information would be stored in .config files on disk or custom server-

side attributes or having the Server package create custom tables to store settings, etc. 

SoftPro Select SDK provides developers with the opportunity to specify custom settings in the plugin’s 

manifest. The settings are defined in JSON as key-value pairs and built into the plugin’s .nupkg file. A 

user who has relevant permissions granted in the SPAdmin module, may view and edit the plugin’s 

settings after the plugin is installed in the system. The plugin package’s code may use the plugin 

manager API in the SoftPro.Select.Client.Plugins namespace in order to read the settings of a given 

plugin. 

“requiresLicense” 

 

As the name suggests, this setting specifies whether or not the plugin would require a valid license for it 

to be operational in the system. This is an optional setting. If not specified, the plugin is considered to 

not require a license.  

If a plugin requires a license, you may install the plugin via SPAdmin, but the Shell packages in it will not 

be downloaded to the SoftPro Select client or the Server packages incorporated into the SoftPro Select 

server’s process until a valid license key is assigned to the plugin. You can find details on the user 

experience regarding plugin licensing in SoftPro Select Release Notes. 

“properties” 
You can specify an array of setting properties in the manifest JSON file. Select 4.6.0 supports four types 

of properties: 

1. Boolean: Translates into a System.Boolean (bool) CLR type. 

2. Integer: Translates into a System.Int64 (long) CLR type. 

3. Number: Translates into a System.Double (double) CLR type. 

4. String: Translates into a System.String (string) CLR type. 

A property has attributes that define the metadata of the property and determine the usage and 

behavior of the property in the system. 

“name”: The canonical name of the property. It must adhere to CLI naming conventions of a property 

defined in a typical class or struct in C#. A plugin cannot have properties with duplicate names. This is a 

required attribute. 

“type”: This represents the data type of the property. This is a required attribute. 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
14 

 

“displayName”: This provides a “friendly name” that will displayed against the property in the settings 

user interface in SPAdmin. This is an optional attribute. If not specified, the “name” of the property will 

be displayed. 

“description”: The description of the property. This is an optional attribute. 

“defaultValue”: The default value that is assigned to the property. Its value must be compatible with 

the JSON-equivalent data type of the property. This is an optional attribute. If not specified, the value 

will be the default value of the underlying CLR type. 

“required”: This has a boolean value that specifies whether or not the property can be null in the 

system. This is an optional attribute. If not specified, the property can support null or blank values. 

“allowedValues”: This specifies an array of unique values that must be of the same type as the “type” of 

the property. A property with this attribute manifests as a dropdown list on the settings user interface 

in SPAdmin. You can only assign this property one of the values defined in the allowedValues array. 

This is an optional attribute. 

Sample Plugin Settings JSON Snippet 
{ 
  "requiresLicense": false, 
  "properties": [ 
    { 
      "name": "MyBooleanSetting", 
      "type": "boolean", 
      "displayName": "The display name", 
      "description": "The boolean setting.", 
      "defaultValue": true 
    }, 
    { 
      "name": "MyIntegerSetting", 
      "type": "integer", 
      "displayName": "The display name", 
      "description": "The integer setting.", 
      "defaultValue": 2 
    }, 
    { 
      "name": "MyIntegerListTypeSetting", 
      "type": "integer", 
      "displayName": "The display name", 
      "description": "The integer setting that manifests as a list in the UI.", 
      "defaultValue": 2, 
      "allowedValues": [ 
        1, 
        2, 
        3, 
        4 
      ] 
    }, 
     
 
 
 



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
15 

 

    { 
      "name": "MyNumberSetting", 
      "type": "number", 
      "displayName": "The display name", 
      "description": "The number setting.", 
      "defaultValue": 2.1 
    }, 
    { 
      "name": "MyNumberListTypeSetting", 
      "type": "number", 
      "displayName": "The display name", 
      "description": "The number setting that manifests as a list in the UI.", 
      "defaultValue": 2.1, 
      "allowedValues": [ 
        1.1, 
        2.1, 
        3, 
        4 
      ] 
    }, 
    { 
      "name": "MyStringSetting", 
      "type": "string", 
      "displayName": "The display name", 
      "description": "The string setting.", 
      "defaultValue": "default", 
      "required": true 
    }, 
    { 
      "name": "MyStringListTypeSetting", 
      "type": "string", 
      "displayName": "The display name", 
      "description": "The string setting that manifests as a list in the UI.", 
      "defaultValue": "default", 
      "allowedValues": [ 
        "default", 
        "abc", 
        "def", 
        "ghi" 
      ] 
    } 
  ] 
} 

 

  



SoftPro Select Plugins                                                                                                           Authoring Extensions to SoftPro Select 

 

 
16 

 

Contributors 
The following individuals at SoftPro contributed to this document: 

 Phil Barton, Systems Architect. 

 Yatin Tawde, Sr. Software Engineer. 

 Nathaniel Davenport, QA Automation Engineer. 


